DS n°4: intégrales, ED, suites

Durée : 4 heures. Calculatrices non autorisées. Les exercices sont indépendants et peuvent être traités dans l'ordre souhaité. Toute affirmation non triviale doit être justifiée.

Exercice 1

Les questions de cet exercice sont indépendantes.

- 1) Calculer $I = \int_{\frac{\pi}{e}}^{\frac{\pi}{4}} \frac{dt}{\sin t}$. On pourra poser $u = \cos t$.
- 2) Montrer que pour tout $x \in [-1, 1]$, $\arccos x + \arcsin x = \frac{\pi}{2}$. En déduire $\int_{-1}^{1} \left(\frac{\pi}{2} \arccos x\right) dx$.
- 3) On pose $f: x \mapsto \frac{x}{(x^2-1)^2}$. On admettra qu'il existe des réels a,b,c,d tels que f(x) peut s'écrire sous la forme

$$f(x) = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{x+1} + \frac{d}{(x+1)^2}$$

Déterminer ces réels et en déduire une primitive de f sur $]1, +\infty[$.

Exercice 2

On considère l'équation différentielle d'inconnue y :

$$(E): \quad xy' = x + y$$

1) Résoudre (E) sur $I_1 = \mathbb{R}^*_-$ et $I_2 = \mathbb{R}^*_+$.

On cherche à résoudre (E) sur \mathbb{R} en procédant par analyse-synthèse. Soit donc $y : \mathbb{R} \to \mathbb{R}$ une solution de (E). En particulier, $y|_{\mathbb{R}^*_+}$ est solution de (E) sur I_1 et $y|_{\mathbb{R}^*_+}$ est solution de (E) sur I_2 .

1

- 2) Montrer que y(0) = 0.
- 3) Déterminer $\lim_{x\to 0^+} y(x)$ et $\lim_{x\to 0^-} y(x)$.
- 4) Montrer que y est continue.
- **5)** Est-ce que y est dérivable?
- 6) Conclure.

Exercice 3

Résoudre les équations différentielles suivantes :

1)
$$y' + y = \frac{1}{1 + e^t}$$

2)
$$\begin{cases} y'' - 2y' + y = t \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

3)
$$y'' - 2y' + y = \sin^2 t$$

Exercice 4

On considère une suite $(a_n)_{n\in\mathbb{N}}$ à termes positifs telle que

$$\forall n \in \mathbb{N} \qquad a_{n+2} \le \frac{2a_{n+1} + 3a_n}{8}$$

On veut montrer que cette suite tend vers 0.

- 1) Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=a_0,\ u_1=a_1$ et $\forall n\in\mathbb{N}\ u_{n+2}=\frac{2u_{n+1}+3u_n}{8}$. Exprimer le terme général u_n en fonction de a_0,a_1 .
- 2) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0.
- **3)** Montrer que: $\forall n \in \mathbb{N}$ $0 \le a_n \le u_n$.
- 4) Conclure.

Exercice 5

Soit a un réel strictement positif. On considère la suite (x_n) définie par $x_0 = a$ et la relation de récurrence

$$\forall n \in \mathbb{N}$$
 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$

- 1) Donner le tableau de variations sur \mathbb{R}_+^* de la fonction f définie par $f(x) = \frac{1}{2} \left(x + \frac{a}{x} \right)$.
- **2)** Démontrer que : $\forall n \in \mathbb{N}^* \quad x_n \ge \sqrt{a}$.
- **3)** Montrer que: $\forall n \in \mathbb{N} \quad x_{n+1} x_n = \frac{1}{2x_n} \left(a x_n^2 \right).$
- 4) En déduire que (x_n) converge vers \sqrt{a} .

Exercice 6 (pour les plus audacieux...)

Soit $(c_n)_{n\in\mathbb{N}}$ la suite définie par $c_0=0$ et pour tout $n\in\mathbb{N},$ $c_{n+1}=\sqrt{\frac{1+c_n}{2}}$.

1) Montrer que pour tout $n \in \mathbb{N}$, $c_n = \cos\left(\frac{\pi}{2^{n+1}}\right)$.

On considère les suites $(S_n)_{n\in\mathbb{N}}$ et $(T_n)_{n\in\mathbb{N}^*}$ définies par les relations suivantes, pour tout $n\in\mathbb{N}^*$:

$$S_0 = 2$$
 $S_n = \frac{S_{n-1}}{c_n}$ et $T_n = \frac{S_n}{c_n}$

2

- 2) Montrer que (S_n) et (T_n) sont adjacentes. Que peut-on en déduire ?
- **3)** Montrer que pour tout $n \in \mathbb{N}$, $S_n = 2^{n+1} \sin\left(\frac{\pi}{2^{n+1}}\right)$.
- 4) En utilisant le fait que $\lim_{x\to 0} \frac{\sin x}{x} = 1$, en déduire la limite de (S_n) .